Metal Finishing Guide Book


Issue link:

Contents of this Issue


Page 753 of 843

Fig. 3. Common pulse waveforms. and minerals in the supply water, and in these cases, the power supplies may require periodic maintenance to clean the water passages and filters. Pulse Plating Direct current plating deposits metal utilizing a continuous application of energy, pulse-plating systems provide the opportunity to modulate the voltage or current to achieve different results. The application of gold, silver, and copper with pulse plating results in finer grain structures, higher surface densities, and lower electrical resistance. Additionally, plating times can be reduced by up to 50%. These characteristics make pulse plating attractive, if not mandatory, in the electronics industry. From an industrial standpoint, pulse plating has found a number of important applications. For example, when used in chromium plating, pulse plating will result in a harder, more wear-resistant surface. In a nickel plating application, using pulse plating may eliminate the need to add organic compounds to control stress and will result in a brighter finish with better thickness control and reduced plating times. Many plating profiles are available, including standard pulse, superimposed pulse, duplex pulse, pulsed pulse, and pulse on pulse. These waveforms can be obtained from a unipolar power supply. Other variations, possible when using a bipolar pulsing rectifier, include pulse reverse, pulse reverse with off time, pulsed pulse reverse, and pulse-on-pulse reverse. Fig. 3 illustrates a few of the many different pulse waveforms available. The pulsing profile you use will be determined by the type of plating finish desired, the makeup of the plating bath, and the type of power supply available. There are three basic types of power supply technologies employed to achieve 740

Articles in this issue

view archives of Metal Finishing Guide Book - 2013