Metal Finishing Guide Book


Issue link:

Contents of this Issue


Page 755 of 843

ANODIZING Direct Current Anodizing As in the case of electroplating, there is a wide variety of anodizing processes currently in use. Electroplating deposits a metal layer onto a substrate, which may be a metal itself or some nonmetallic material such as plastic. Anodizing, on the other hand, is the conversion of the surface layer of a metal to an oxide. The metal most commonly anodized is aluminum, but other metals, such as magnesium and titanium, can also be successfully anodized. Aluminum will naturally form an oxide layer when exposed to oxygen, but this is a relatively thin layer. Anodizing provides a much thicker coating. Anodized finishes exhibit a number of desirable properties. They are capable of being processed further to modify the appearance of the aluminum. For example, colored finishes are easily obtained by such techniques as dyeing or color anodizing. Anodizing also improves the wearability of aluminum. An anodized finish is much more resistant to abrasion than the base metal. Anodizing is also extensively used in environments where corrosion is a problem. A number of anodizing processes are employed for aluminum. The most common is the sulfuric acid anodizing process. This provides a coating typically 0.1 to 1.0 mil. thick and lends itself to further color processing. Other conventional aluminum anodizing processes are those utilizing chromic acid (found in marine and aircraft applications) and phosphoric acid (used as a surface preparation for adhesive bonding and as a base for electroplating). These conventional anodizing processes require a DC power supply similar in nature to those found in electroplating, except that the voltages typically used in conventional anodizing (18-50 V) are higher than those commonly found in plating (6-18 V). Otherwise, the design of the rectifiers for DC electroplating and DC anodizing is basically the same. Hard-coat anodizing is often employed in applications where a more abrasive or corrosion-resistant oxide layer than that obtained with conventional anodizing is desired. Hard-coat anodizing processes typically demand voltages between 50 and 150 V, and in many cases, pulse power supplies are utilized to obtain specific results. As in electroplating, the pulse rectifiers are very similar in design, options, and usage. Color Anodizing Many architectural aluminum anodizing applications require that color be applied to the finished product. Colored finishes are obtained through the use of dyeing, integral, or electrolytic color processes. Dyeing is a simple process. A dye bath is composed of water and dyeing material, and the anodized aluminum is placed in the dye bath for some minutes. After removal from the dye bath, the aluminum is then rinsed and sealed in a normal manner. Integral color is a process by which the color is produced during the conventional anodizing process. Organic acids are added to the anodizing bath, and these acids produce a color, ranging from amber through black, in the aluminum oxide. Standard DC rectifiers are used, though at a voltage approximately three times that found in sulfuric acid anodizing. The electrolytic or two-step process begins by conventional sulfuric acid anodizing using DC power. The parts are then placed into a coloring solution 742

Articles in this issue

view archives of Metal Finishing Guide Book - 2013